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THE RELATION BETYEEN FINITE ELIMENT METHODS AND
NODAL METHCDS IN TRANSPORT THEORY

by

Wallace F. Walters
Radiation Transpo.'t Group, X-6
P. 0. Box 1663, MS B226
Los Alamos National Laboratory
Los Alamos, NM 87545

I. INTRODUCTION

This paper examines che relationship between nodal methods and finite-
element methods for solving the discrete-ordinates foram of the transport
equation in x-y geometry. Specifically, we will examine the relation of
three finite-element schemes to the linear-linear' (LL) and linear-nodal?’’®
(LN) nodal schemes. The three finlte-element schemes are the linear-
cont {nuous-diamond-difference* (DD) scheme, the linear-discontinuous®~* (LD)
scheme, and the quadratic-discontinuous (QD) scheme. A brief derivation of
the (LL) and (LN) nodal schemes is given in the third section of this paper.
The approximations that cause the LL scheme to reduce to the DD, LD, and QD
schemes are then indicated. An extremaly simple method of deriving the
finite-element schemes (s then introduced.

Recently, tvo papers have been published that i{ndfocate, in some detail,
an intaresting form into which the LN equations ocan be cast.®''® It will be
shown that the finit_.-element schemes being oconsidered ocan be cast into this
Jame "augmanted-weighted-diamond" form, and the same algorithm that has been
used to solve the LN equations can be used to solve the finite-element
equationa. For more inforpation on the nodal method in trunsport theory, an
excellen: review paper on the subject that is being published should be
oconsulted.!' In the last seotion of the paper, a well-logging prohlem {»s
analyzed using all of the sochemes under discussion in this paper. The
agouracy of the results aru in agreement with the nbservations made in the
paper.
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II. PRELIMINARIES

The discrete-ordinat.s form of the tranaport equation for direction m
and energy group g is

oY ] ]
» [ ] .

Here ¥(x,y,u,n) is the neutron angular flux. ¢ is the neutron total cross
section. S is the driving source for the transport equation and can condist
of in~scatter, out-scatter, self-sacatter, and fission. u and n and the x-

and y-direction cosines. Hereafter, the subscripta m and g will be
suppresased.

The solution to this form of the transport equation will be obtained
for all the numerical schemes within the rectangular node or cell bourded by

X, < x<x

with

AX = X -~ X

and

Throughout this paper, L, R, B, T, and i. are subsoripts such that L = left,
R = right, B =« bottom, T «» top, and A =« average. For aimplioity in develop-
ing the equations for the schemes under ocorsideration, it will be assumed,
in all ocases, that uy,n > 0. That is, the neutron flow is from left to right
and dbottom to top.
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The cell-based Legendre polynomials used by other invescigators'? are
now introduced

Po(u) -1 , (2a)
-2
2(u - u)
P1(u) - T— R (Zb)
-2
6(u - u) 1
P.(u) - =220 . -~ | (2¢)
2 (Au)2 2

where u = x or y. These polynomials exhibit the usual orthogonal properties

Au
! Pl(u)Pk(u)du = 84 ToT (3)

If the neutron angular flux within the node is given by ¥(x,y), then

Yr *R
[ dy [ deo(x)Po(y)Y(x.y)

y
B L ‘
¥ - AXBY ' (La)
Yr *R
3 I dy I dxP, (x)P_(y)¥(x,y)
y X 1 0
v = B L (4b)
X AxAy !
and
ry X
3 ’ T dy I R dxP, (x)P, (y)¥(x,y’
yB xL 0 i
‘Jj - AxAy - (uO)

where *A i{s the average flux in the node, ’x is the >verage x-moaent o’ the
fiux in the node, and vy is the average y-moment o7 the flux ir the node.
In a ai{milar manner, if the sourve within the node 's given by &(x,y), then

8A can be defined as the averagc source in the node, Sx the average x-moment

of the source in the node, and S, the average y-m.ment of the source {n the
J

node.
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) By !(z.yT) is the angular flux on the top edge or face of the node,
then

"
.T - [xb v . (5a)

Po(x)!(x.yT)

R
3 I‘L P1(x)7(x.yT)
OT - Ax ’ (Sb)

where “T is the average ingular flux on the top adge of the node, and eT is
the average x-moaent on the top edge of the node. Similar expreasions hold
for the moments on the oth..: edges,.

At this point, three moment equationa of the tranaport equation are
introduced using the quantities defined earlier in this section. If the
transport equation i{s multiplied by Po(x) . Po(y)/AxAy and integrated over

the node, the balance equation for the avsrage flux *A is obtained

. .y, - _% : (6)

If the transport equation i{s multiplied by 3 - Pl(x) . Po(y)/AxAy and in-
tegrated over the node, the ba)ance equation for the average x-moment of
flux vx is obtained

v + v, - 2v,) (8. = 85) 5

tl I:y X

. (7

It the transport equation is multiplied by 3 - Po(x) . P‘(y)/AxAy and in-
tegrated ovar the node, the balance equation for the average y-moment of the
flux *y is obtained

(6, - 0,) 3(w, *+ w, - 2y,) S
R L”, B T A, v = A (8)
y cy Y 0
Here, € " obx/y and 'y = gAy/n.
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These moment equations will be used to simplify terms appaaring in the
derivation of the nodal equations in the next section. The discontinuous-
finite-element equations will be derived directly form these moment equa-
tions in the fourth section of this paper.

III. NODAL SCHEMYS

The squations for the LL nodal scheme¢ are derived based on linear
expansions for the source within the nods S(x,y), and fluxes on the edges

such as Y(K.VT). These are

S(x,y) = SAPo(x)Po(y) + SxP1(x)Po(y) + SyPo(x)PI(Y) , (%9a)
and

!(x.yT) - vTPO(x) + Pl(X)eT . (9p)

If the transport equation ic multiplied vy Po(x)/Ax and a transverse
Integration is carriod out over x, the resulting one-dimensional equation in
y car be solved for the unknown angular flux 'T along the top adge

e (v = wg)
- - ! * _LL—_R_.
vy = vp oxp(-c ) + Po(cy)[SAAy.n c )
(10)
c (6 - 0.)
+ (2P (e)) = PoCe )1[s ay/n + -’-——';——R—]

X

Notice that a linear transverse leakage and source are indiocated in this
expreasion.

If the transport equation i{a multiplied by 3 ° P1(x)/Ax. and a trans-
verse integration is ocarri{ed out over x, the resulting one-dimgensional
eqQuation in y can be solved for the unknown x-moment of the angular flux eT
along the top edge
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3 (29, -9, - )
0y = &y oxp(-:’) + Po(ty)[SxAY/n o LR c, R L ]

(11)

3¢ (29, -6, - 86, )

- y 'y R L

. [2P1(cy) Po(ey)][ N ]

By carrying out the transverse integration over the y variable, simi'ar
equations for the unknowns 'R and eR can be derived. Here

- -
Pole) = -“—:-—) , (12a)
and
[1 - Pye))
P1(€) - _—_C_ . (12b)

These four equations, along with the three moment equations for ¢;. *x’ and
*y' consiitute the LL nodal scheme.

Before reducing the LL equations to the LN equations, it should be
noted that the terms in equations for *T and eT that appear due to the
constant expansion teras oan bs rewritten using the *A balance equation. 1In
a similar manner, the terms in the equations for ¥y and eT that appear due
to the 1linear expansion terms can be r~written using the wy balance equa-

tion. The rewritten equations are

"T - "B CXP("Cy) + Po(cy) x [ty"A + "T - "B] + [2P1(Cy) - Po(cy))
(13a)
« [3(wg + vy - 29,) ¢+ ‘y*y] '

and
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o0, = 0 exp(-ey) + Po(ey) x [:ywx + (o - OB)]

+ [2?1(£y) - Po(ey)] (13p)
€
x [3\;&) « (29, - 8 - 8] .

The LN equations are obtained by assuming the diamond relation in only the

last term in the equation for eT. That is,
(o, + 6,)
R L

A similar assumption is made for Wx in the eR equation. The LN equations
are much simpler than the LL equations due to uncoupling of the equations
that results from this diamond approximation in the 6 equations. Note that
this {s equivalent to dropping all terms in the ¢ equations that appear
because of linecar terms in expansions. The LN equation for eT can be solved

for *x to oubtain

P, (c ) P, (¢ )
1 1
"X'e'r‘["T'LYPocy]”’a [1——(-17P0cy] . (15)

A similar expression is obtained for *y from the °n equation. n the limit
of small Ay, this relationr for *x becomes the diamond relation

‘;x -——T—- ’ (16)

and in the limit of large Ay, it beocomes the astep relation that agrees with
the result in the linear-discontinuous (LD) method

*X - OT . (17)

In Ref. 9, these LN equations were further reduced to an "augmented-
weighted-diamond™ form. The expressions for 'A are of the following form:
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1-a 1 ¢a
o = l——)w, + l=3—)w; - C 0, + C,S (18a)

1 - 1 +a
%" l-—é-:!]vg* l'T!]"-r“:: 8, +C, S

voL 2ySy f (18b)

The constants appearing in these relations depend only on u, n, Ax, Ay, and
0. Using these exprassions in the *A balance equation, *A can be deter-
mined, and all outflow quantities can be obtained by simple extrapolations.

The computer program using the LN scheme is programmed using this technique
to solve the LN equations.

IV. FINITE ELEMENT SCHEMES

It is a simple matter tc generate the diamond-difference relations from
the nodal equation (13a). Firat, the Pade' (1,1) expansion is used for the
exponent everywhere it appeara in this equation. That {is

exp(-¢) = 'g-‘:;'—z‘ . (19)

Note that Po(c) and P1(e) become in this approximation

2
Po(c) “Tve (20a)
and
1
P1(c) "3 (20b)
80 that

2 ¢ P,(c) - Po(c) -0 .

Ths equation for *T becomes
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€
_! 2 -
e, tae ey Ley¥y * op = w) - (21

2
Vp = ¥ 3

+

This relation reduces to

YotV
T B
o2, (22)

which is the usual diamond-difference relation associated with a linear-
continuous finite element in x~y rectangular geometry. This relation along
with the balance equation, Eq. (6), constitutes the DD scheme.

The use of the Pade' (1,1) approximation in the LL equations removes
the influence of the linear moments of the flux an/. the source in the deter-
mination of the node average flux and the node edge fluxes. It should be
clear that the DD scheme is less accurate than all the higher order schemes
when lirear mrments of the flux and source are imnortant and when the Pade'
(1,1) approximation is a poor approximation to the axponent. Both of these
conditions can occur when the optical tnhickness of the node (ex or ey)
becomes large. Notice that the Pade' (1,1) approximation tu the exponent is
negative for ¢ > 0.

The linear-discontinuous (LD) equations can be obtained from the LL
equations (13a) and (13b) with the following assumptions. First, the Pade’
(1,2) approximation is used for the exponeats appearing in Eq. (13a) for Vpe
This approximation is

exp(-g) = 6 -2 . (23)

6 + U + €2

Next i¢ assumed that the unknown node-~edge linear- flux moments are equal to
the node-averuge linear flux moments. That is

(24a)

and

OR -y, . {24b)
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These approximations, along with the three balance equations (6), (7),
and (8) for Wy W and 'y' and the approximate equations for ¥ and v
constitute the LD equations. Notice that the Pade' ’1,2) approximation to
the expouent i{s negative for ¢ > 3.

The scheme referred to as the quadratic-discontinuous (QD) scheme is
identical to the LD scheme except for the Pade' approximation used in
Eq. (13a). The QD scheme is obtained by assuming the Pade' (2,3) approxima-
tion for the exponent in Eq. (13a). This approximation is given by

60 - 24c + 3¢°

exp(-g) =
60 + 36 + 9:2 + 23

. (25)

It 1s important to note that this Pade' approximation to the exponent is
always positive for any positive real value of ¢e. In the next section of
t Is paper, che discontinuous-finite-element schemes will be derived in a
more straightforward manner using polynomial expansions and the balance
equations.

V. DERIVATION OF DISCONTINUOUS FINITE ELEMENT SCHEMES

First, the equations of the LD scheme will be derived directly from the
balance equations, Eys. 6~8. The LD approximation assumes a linear expan-
sion for the flux ¥(x,y) within the node

¥(x,y) u wAPo(x)Po(y) + wxP1(x)Po(y) + wy'o(x)P1(y) . (26)

Recall that, in discontinuous methods, the flow is discontinuous on the
inflow edges, but coatinucus at the outflow edges. This implies that

(27a}

and

- WT - "A b (27b)
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If the expression for eR is substituted into the balance equation for oy,
Eq. (8), then
3(wy + vy - 2v,) , 0 S
T ea A**y\‘*zl)‘zl"‘"%' (28)
y X y

Now, substitute the expression (27b) into Eq. (28) to obtain

1 + ¢ 6 ¢ S_Ay
- ~ )i xy. Ly _ Y
3wp + vg ~ 29,) ¢ e vy - WL : ) : — . (29)

Rearranging this equaticn yields the "augmented-weighted-diamond" form
associated with the LD approximation

f S Ax
- - - - -y . A
vy = (2 £v, - U ‘y)*a g ‘x [eL + - ] . (30)
e (1 +¢))
fy = 3¢ Z e (1 f €.) ° (31)
y X y X

A similar expression can be odbtained for the x coordinate carrying out
similar operations on the v, equation, Eq. (7). These expressions, along
with the balanre equation of *A' constitute the equations of the linear-
discontinuous (LD) scheme.

The quadratic discontinuous approximation makes the assumption of a
quadratic expansion within the node

¥(x,y) = wAPo(x)Po(y) + wxP1(x)Po(y) + wyPo(x)PI(y)
(32)

+ ¥ Po(XIPGY) + ¥ Po(x)P(Y) .

yyFo
Here *uu is the second moment of the flux within the cell with u = x or y.
In this approximation, the assumption of a linear source uithin the 1ode anc
a linear flux on the edges of the ncde are retained. With these issump-
tions, Lhe second moment balance equations are
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) Y =0 (33a)

and

5(Vp = ¥y ~ 2v¥,)
I 3 Y 4y, =0 . (33b)
<y vy

From the quadratic [lux exhansion
Wy - WT - ‘l’h - Wyy . (3”)
Substituting this relation for wy and solving Eq. (33b) for wyy yields

v o 2% 2 ¥ 2% (35)
Yy Tty + 10) ‘ >

Substituting this expression for wyy into Eq. (34) for wy.

5(Pp = Yo) * € (Vo - )
T B y 'T A
Yy " (z, + 10) ' (36)

Notice that for ¢ large, this is the same as the LD relation in Eq. (27b)
for Wy' Since the flux on the edge of the node is linear, Eq. (27a) still
appliea. Substituting from Eq. (36) into Eq. (28), the quadratic-
discontinuous "augmented-weighted-diamond" form is obtained, which is
identical to that of the LD scheme, Eq. (30). The only difference is that

the fy are now definec as

(10 +e.) * e, ¢ (1 +¢.)
fy " T +¢ Ye4¥1 +e.) + 3¢ (1; +e,) (37)
y y Syt Ex x €y

A similar expression can be obtained for the x coordinate carrying out
similar operations cn the wx equation, Eq. (7). These expressions along
with the balance equation for WA constitute the equations of the quadratio-
discontinues QD scheme.
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In this section, the "augmented-weighted-diamond" form of the LD and QD
schemes has been derived simply by using the balance equations, and the
polynomial expansions associated with each scheme. In general, it {s
axpected that the posjtivity should be in the ordsr DD, LD, and QD, from
most positive to least positive, This is based on the positivity of the
Pade' approximation used in each scheme.

VI. DISCUSSION AND RESULTS

‘The results of an analysis of a two-dimensional, well-logging problem
investigated in Refs. 9 and 13 are showr in Figs. 1 and 2. The LL solution,
which is the most accurate solution at every node refinement, is shown in
both figures. The data for both figures is shown in Table 1. The
absorption rate plotted is that determined in the detector of a well-logging
tool. The minimum value of the mean-free path in this problem is V.67 om.
A node size of 8 cm is then roughly 12 mean-free paths. In Fig. 1, it
should no% be surprising, then, that the DD solution is so ill behaved for
this node size. There are 80 many negative flux fixups that the result s
almost meaningless. At a node size of 2 cm or 3 mean-free paths, both the
LL and LN solutions are well within one percent of the reference
extrapclated value for detector absorption rate. Clearly, both LL and LN
solutions are far more accurate than the DD solutions for reasonably sized
nodes.

The LD and QD results are plotted along with the LL results in Fig. 2.
Surprisingly, the LD results are slightly mcre accurate than the QD results
for all but the smallest node size. This inaccuracy in the QD results is
probably caused by the neglect of the cross term in the quedratic expansion
Eq. (32). 1If the ocross term had been retained, the system of equations for
*A' WT' and wR would have been fully coupled with all of the unknowns ap-
pearing in each of the three equations. In this case, the expreasion for f
would have been extremely complinsted. Neither of the discontinuous schemes
is as acourate as the two nodal schemes. The advantage of the discontinuous
schemes is that they can be applied to geomotries other than x-y rectangular
geometry where it is diffiocult, if not impossible, to use the nodal trans-
port method.
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In Ref. 12, it was found that in one-~dimensional problems with a linear
source representation, the anslytic characteristic method yielded accuracies
of 0(Ax"), while the linear-discontinuous method gave O0(Ax?). This result
was the motivation for examining the QD scheme described in this paper.
Since the quadratic-discontinuous scheme generates the more accurate Pade'
(2,3) approximation to the exponent, it was hoped that a two-dimensional
scheme would be obtained which was equivalent in accuracy to the LL nodal
scheme. In future work, the full quadratic exvansion will be examined.

In the present occding, the weights o in Eqs. (18a,b) and ry in Eqs. 31
and 37 were recomputed for each phase-space point in the inner-most loop.
If these weights are precomputed and stored, then each of these schemes will
execute at approximately the same speed. Recall that the linear methods
must compute additional moments. The storage required for one energy group
i{s the size of the coarse mesh times the number of discrete directions in a
quadrant (two dimensions).
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TABLE 1
Absorption Rate in Detector
Absorption Rate n/sec
x 10°
Met hod LN DD DD LD QD
Node Size
(om.)
8.0 9,8605 10,475 14,987 11.772 12,112
4,0 9,7785 9.89515 8.4679 10,116 10.246
2.0 9.6874 9.7009 9.3142 9.7468 9.7537
1.0 9.5429 9.6440 9.5413  9.6579 9.6519
.50 9.5087

.25 9.6257

F. Walters



Absorption Rate vs. Node Size
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Scaled Absorption Rate
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